Nanoindentation studies on viral particles
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The AFM nanoindentation experiments on
bacteriophage HK97 show a surprisingly
complex maturation pathway in which the
fragile Prohead II (P-II) is being strengthened
by: 1) an increase in Young's modulus, 11) an
increase 1n ultimate strength and 111) astance

against material fatigue. The resulting
particle 1s called Head II (H-II).
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a) Ad35F particles subjected to mechanical failure. The top row shows a particle that completely
disintegrated into individual smaller particles in response to mechanical failure. Left 1s the particle
before, right 1s the particle after nanoindentation. The corresponding height profiles are taken
along the white arrows indicated in the images. The bottom row shows a particle that partially
maintained capsid integrity upon mechanical failure. b) Surface rendering of an individual hexon
trimer as described in the crystal structure of Ad35F; pdb 1VSZ. ¢) AFM images of the smaller
particles that arise from mechanical failure of Ad35F. d) A typical height profile of force induced
disassembly products.
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AFM measurements on the Norwalk virus show the unexpected differences
in mechanical behaviour of the thin shell mutant particle (CT303) with
respect to the NVLP. This 1s 1n apparent contradiction to continuum elastic
theory. Our results indicate that the "bridge-like" structures on the latter yield
a particle under 1sotropic pre-stress that strenghens the virus.
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- Virus-host cell molecular interactions impact the mechanical properties of the virus capsid.

- Host cell molecules with opposite effects on capsid disassembly modulate the elastic response
of the HAdV virion accordingly.

- We uncovered a direct link between capsid disassembly, genome uncoating and the
mechanical properties of virus capsids.
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